
Dataset:
We used a dataset of 822,010 URLs, with 
394,982 being phishing links, and the rest 
legitimate. Phishing links were labeled with 
0s and legitimate links were labeled with 
1s. We padded each URL to 256 characters 
and tokenized them into numerical values 
for the models to process. We then split the 
dataset into training, testing, and validation 
sets using “train_test_split()” from the 
“scikit-learn” [1] Python machine learning 
library.

Experimentation: 
We decided that a CNN or RNN would be 
the best choice of model since URLs don’t 
have defining features. We used the 
“Keras” [2] Python neural network library 
for training and testing both models. 
     The CNN  was trained with several 
layers. An embedding layer to turn 
tokenized URLs into vectors, a 1D 
convolution layer to recognize patterns and 
features of the URLs, a max pooling layer 
to highlight the most important features, a 
dense 64 neuron layer with a ReLU 
activation function to combine and interpret 
the features, a dropout layer to resist 
overfitting by assigning some instances a 0, 
and lastly a dense one neuron layer with a 
sigmoid function to classify the links. The 
convolution layer had 32 filters and 
spanned 3 characters. We trained the CNN 
for 10 epochs.
     The RNN was trained similarly to the 
CNN. We again added an embedding layer 
to start. However the core was the long 
short-term memory (LSTM) layers. The 
first had 64 units and returned sequences 
for the subsequent LSTM layer. To prevent 
overfitting, we included dropout layers with 
a rate of 0.5 after each LSTM layer. After 
this, a 64 neuron dense layer with the ReLU 
activation function interpreted the LSTM 
features. The final layer was a dense layer 
with 1 neuron with a sigmoid function to 
classify the URLs. Like the CNN, we 
trained for 10 epochs.

Metrics:
Accuracy, processing time, and number of 
false positives and false negatives are the 
metrics we chose because they are 
generally the most important when it comes 
to a binary classifier model. Accuracy and 
the amount of false positives and false 
negatives determine how successful a 
model is, and give insight to how the model 
is fit to the data. Processing time is crucial 
to determine how scalable a model is. This 
is especially important for our idea to scale 
one of the models into a real life application

 

• We wanted to explore how effective 
different machine learning models are in 
recognizing malicious URLs, so that we 
can leverage our findings to fight 
cybercrime.

• How effective is a convolutional neural 
network compared to a recurrent neural 
network in detecting phishing URLs?

Methodology

This study compares the effectiveness of 
convolutional neural networks (CNN) and 
recurrent neural networks (RNN) in 
detecting phishing URLs. It examines each 
model’s accuracy, time to process, and 
number of false positives/negatives on a 
dataset of over 800,000 URLs. To train the 
models, each URL was tokenized at the 
character level before processing. From our 
results we concluded that for higher 
accuracy, an RNN should be chosen. 
However, the processing time for the RNN 
was nearly four times that of the CNN 
model, with only slightly better 
performance. Thus, CNN may be more 
effective depending on the case.

Abstract

As cyber threats evolve, particularly 
phishing attacks, the need for advanced 
detection methods is crucial.  This study 
explores the effectiveness of Convolutional 
Neural Networks (CNN) and Recurrent 
Neural Networks (RNN) in identifying 
phishing URLs.  Phishing, a prevalent form 
of cybercrime, often deceives users into 
interacting with malicious links.  Our 
research focuses on a dataset of over 
800,000 URLS, with a significant portion 
being phishing threats.  We aim to compare 
CNN and RNN models in terms of 
accuracy, processing time, and false 
positives/negatives, providing insights into 
the most efficient techniques for phishing 
detection.  This work is especially relevant 
for those less versed in cybersecurity 
offering a technological shield against those 
sophisticated digital traps.  
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In conclusion, the employment of machine 
learning techniques for the detection of 
phishing URLs presents a significant 
advancement in bolstering cyber security 
measures.  Our study demonstrates that both 
Convolutional Neural Networks (CNN) and 
Recurrent Neural Networks (RNN) are 
highly effective in identifying malicious 
URLs, each offering distinct advantages.  
CNNs, with their quicker processing times, 
emerge as a practical choice for real-time 
applications, balancing efficiency with a 
high degree of accuracy.  On the other hand, 
RNNs, despite their longer processing 
durations, provide slightly superior 
accuracy, making them suitable for contexts 
where precision is paramount.

This research opens new avenues for the 
application of machine learning in 
cybersecurity.  The potential for these 
models to be tailored and enhanced for 
specific cyber threat detection and tasks is 
immense.  Future exploration could delve 
into optimizing these models for speed and 
accuracy, potentially integrating the 
strengths of both CNNs and RNNs.  Such 
advancements promise to significantly 
elevate the standards of online safety, 
offering robust defenses against the 
constantly evolving landscape of cyber 
threats.  

Conclusions

Figure 1: CNN Accuracy 
and Loss by Epoch

Figure 2: Confusion 
Matrix of  CNN

Figure 3: RNN Accuracy 
and Loss by Epoch

Figure 4: Confusion 
Matrix of  RNN


