
Dataset:
We used a dataset of 822,010 URLs, with
394,982 being phishing links, and the rest
legitimate. Phishing links were labeled with
0s and legitimate links were labeled with
1s. We padded each URL to 256 characters
and tokenized them into numerical values
for the models to process. We then split the
dataset into training, testing, and validation
sets using “train_test_split()” from the
“scikit-learn” [1] Python machine learning
library.

Experimentation:
We decided that a CNN or RNN would be
the best choice of model since URLs don’t
have defining features. We used the
“Keras” [2] Python neural network library
for training and testing both models.
 The CNN was trained with several
layers. An embedding layer to turn
tokenized URLs into vectors, a 1D
convolution layer to recognize patterns and
features of the URLs, a max pooling layer
to highlight the most important features, a
dense 64 neuron layer with a ReLU
activation function to combine and interpret
the features, a dropout layer to resist
overfitting by assigning some instances a 0,
and lastly a dense one neuron layer with a
sigmoid function to classify the links. The
convolution layer had 32 filters and
spanned 3 characters. We trained the CNN
for 10 epochs.
 The RNN was trained similarly to the
CNN. We again added an embedding layer
to start. However the core was the long
short-term memory (LSTM) layers. The
first had 64 units and returned sequences
for the subsequent LSTM layer. To prevent
overfitting, we included dropout layers with
a rate of 0.5 after each LSTM layer. After
this, a 64 neuron dense layer with the ReLU
activation function interpreted the LSTM
features. The final layer was a dense layer
with 1 neuron with a sigmoid function to
classify the URLs. Like the CNN, we
trained for 10 epochs.

Metrics:
Accuracy, processing time, and number of
false positives and false negatives are the
metrics we chose because they are
generally the most important when it comes
to a binary classifier model. Accuracy and
the amount of false positives and false
negatives determine how successful a
model is, and give insight to how the model
is fit to the data. Processing time is crucial
to determine how scalable a model is. This
is especially important for our idea to scale
one of the models into a real life application

• We wanted to explore how effective
different machine learning models are in
recognizing malicious URLs, so that we
can leverage our findings to fight
cybercrime.

• How effective is a convolutional neural
network compared to a recurrent neural
network in detecting phishing URLs?

Methodology

This study compares the effectiveness of
convolutional neural networks (CNN) and
recurrent neural networks (RNN) in
detecting phishing URLs. It examines each
model’s accuracy, time to process, and
number of false positives/negatives on a
dataset of over 800,000 URLs. To train the
models, each URL was tokenized at the
character level before processing. From our
results we concluded that for higher
accuracy, an RNN should be chosen.
However, the processing time for the RNN
was nearly four times that of the CNN
model, with only slightly better
performance. Thus, CNN may be more
effective depending on the case.

Abstract

As cyber threats evolve, particularly
phishing attacks, the need for advanced
detection methods is crucial. This study
explores the effectiveness of Convolutional
Neural Networks (CNN) and Recurrent
Neural Networks (RNN) in identifying
phishing URLs. Phishing, a prevalent form
of cybercrime, often deceives users into
interacting with malicious links. Our
research focuses on a dataset of over
800,000 URLS, with a significant portion
being phishing threats. We aim to compare
CNN and RNN models in terms of
accuracy, processing time, and false
positives/negatives, providing insights into
the most efficient techniques for phishing
detection. This work is especially relevant
for those less versed in cybersecurity
offering a technological shield against those
sophisticated digital traps.

Introduction

Results

Purpose & Research
Question

[1] Pedregosa, F., Varoquaux, G., Gramfort,
A., Michel, V., Thirion,
 B., Grisel, O., …
 Duchesnay, É. (2011). Scikit-learn:
Machine Learning in Python.
 Journal of Machine
 Learning Research, 12(85), 2825–2830.
Retrieved from

http://jmlr.org/papers/v12/pedregosa11a.ht
ml

[2] Chollet, F., & others. (2015). Keras.
GitHub. Retrieved from
 https://github.com/fchollet/keras

References

Phishing Detection using
Neural Networks

Daniel DeFlores, Ethan Orevillo

In conclusion, the employment of machine
learning techniques for the detection of
phishing URLs presents a significant
advancement in bolstering cyber security
measures. Our study demonstrates that both
Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN) are
highly effective in identifying malicious
URLs, each offering distinct advantages.
CNNs, with their quicker processing times,
emerge as a practical choice for real-time
applications, balancing efficiency with a
high degree of accuracy. On the other hand,
RNNs, despite their longer processing
durations, provide slightly superior
accuracy, making them suitable for contexts
where precision is paramount.

This research opens new avenues for the
application of machine learning in
cybersecurity. The potential for these
models to be tailored and enhanced for
specific cyber threat detection and tasks is
immense. Future exploration could delve
into optimizing these models for speed and
accuracy, potentially integrating the
strengths of both CNNs and RNNs. Such
advancements promise to significantly
elevate the standards of online safety,
offering robust defenses against the
constantly evolving landscape of cyber
threats.

Conclusions

Figure 1: CNN Accuracy
and Loss by Epoch

Figure 2: Confusion
Matrix of CNN

Figure 3: RNN Accuracy
and Loss by Epoch

Figure 4: Confusion
Matrix of RNN

